Ring-Opening of Glycidyl Derivatives by Silanes Mediated by Ti(O-i-Pr)₄ or Al(O-i-Pr)₃: Access to Versatile C₃ Building Blocks.

Kun I. Sutowardoyo and Denis Sinou*

Laboratoire de Synthèse Asymétrique, Unité Associée au CNRS, Université Claude Bernard Lyon I, ESCIL 43, boulevard du 11 Novembre 1918, 69622 Villeurbanne Cédex, France.

(Received 22 April 1991)

Abstract: Ring-opening of chiral glycidol or glycidyl tosylate by Me₃SiN₃ or Me₃SiCN catalyzed by Ti(O-*i*-Pr)₄ or Al(O-*i*-Pr)₃ occured in a regiospecific manner and with very high stereoselectivity, leading to new trifunctionalized chiral building blocks. The enantiomeric excess of the ring-opened products was 90-95 %, as determined by ¹H NMR of the Mosher ester derivatives, indicating that there was not significant loss of optical purity during the ring-opening. This methodology was applied for the one-pot synthesis of (R)-1-azido-3-naphthyloxy-2hydroxypropane in 94 % ee, a precursor of analogs of propanolol.

Glycidol and related C₃-synthons have found widespread synthetic utility as chiral building blocks for asymmetric synthesis.¹ Noteworthy are the ease of preparation of these compounds and particularly the crystalline derivatives, and now their commercially avaibility in optically active form.² Steechiometric amounts of Ti(O-*i*-Pr)₄ mediated the regio- and stereoselective attack of a variety of nucleophiles at C-3 of 2,3-epoxy alcohols under mild conditions.³ However, this process failed to afford the desired opening of glycidyl derivatives without a free hydroxyl function like glycidyl tosylates. Recently, it was shown that ring-opening of glycidyl tosylates occured with high regio- and stereoselectivity with alcohols when BF₃ etherate was used as the catalyst.⁴

Following our continuing interest in the ring-opening of epoxides with trimethylsilyl compounds in the presence of a catalytic amount of Ti(O-*i*-Pr)₄ or Al(O-*i*-Pr)₃,⁵ we report here the very high stereoselectivity observed in the ring-opening of the chiral glycidyl derivatives using these systems, leading to new trifunctional chiral building blocks.

Results and Discussion:

Ring-opening reactions of (R)- and (S)-1 and (R)-2 by Me₃SiN₃ with catalytic amounts of Ti(O-*i*-Pr)₄ or Al(O-*i*-Pr)₃ are outlined in Scheme 1 and the results are summarized in Table 1. As previously shown, ring-opening proceeded with very high regioselectivity, only the products 3a, 3b and 5, arising from attack at C-1, being obtained with quite good chemical yields after purification.

Table 1. Opening of Glycidyl Derivatives with Trimethylsilylderivatives in the Presence of Aluminium Isopropoxide and Titanium Isopropoxide.^a

Entry	Epoxide	Silane	Catalyst	% Yield ^b	% ee ^c
1	1a	Me ₃ SiN ₃	Ti(O-i-Pr)4	83	93
2	1a	Me ₃ SiN ₃	Al(O-i-Pr)3	77	92
3	1b	Me ₃ SiN ₃	Ti(O- <i>i</i> -Pr)4	58	90
4	1b	Me ₃ SiN ₃	Al(O-i-Pr)3	50	93
5	2	Me ₃ SiN ₃	Ti(O- <i>i</i> -Pr)4	69	90
6	2	Me ₃ SiN ₃	Al(O-i-Pr)3	70	90
7	1a	Me ₃ SiCN	Ti(O- <i>i</i> -Pr)4	70 d	85
8	1a	Me ₃ SiCN	Al(O-i-Pr)3	40 d	90

^a Ring-opening conditions are described in the Experimental Section.

^b The percent yield refers to the product obtained after work-up and flash-chromatography.

^c The % ee was determined by 300 MHz ¹H NMR analysis of the crude (*R*)-MTPA ester as described in the Experimental Section.

d The percent yield refers to the hydrolyzed product .

To determine the enantiomeric excess (ee) of the ring-opened products 3a and 3b, and so the stereoselectivity of the reaction, 3a and 3b were desilylated and the (R)- α -methoxy- α -(trifluoromethyl)phenyl acetic acid [(R)-MTPA] esters were prepared.⁶ The diastereoisomeric ratio of the resulting mixture was analyzed by ¹H NMR (300 MHz). Figure 1A shows the ¹H NMR spectrum (δ 7.6-7.9) of (R)-MTPA ester of *rac*-3; the aromatic protons ortho to the -SO₂- group appear as a doublet for each diastereoisomer and show base-line separation. The lower field doublet (δ 7.76) is assigned to enantiomer 3a and the higher-field doublet (δ 7.70) to 3b. Integration of the two doublets in 1B and 1C gives a 95:5 ratio of the two diastereoisomers, indicating that the optical purities of 3a and 3b are about 90-93 %, depending about the catalyst used. As we started from compound 1a and 1b having respectively 93 and 95 % ee, the ring-opening proceeded with very high stereoselectivity whatever the catalyst used.

For the determination of the optical purity of 5, this compound was desilylated, and the bis-(R)-MTPA esters of 6 and *rac*-6 were prepared. Figure 2A shows that the two CH₂-OMTPA signals exhibited by the bis-Mosher ester of *rac*-6 are separated in the region δ 4.3-4.8. As the A proton doublet of the AB quartet of each diastereoisomeric CH₂-OMTPA group is readily separated (δ 4.58 and 4.70) and not the B proton doublet, the determination of the diastereomeric purity, and so the enantiomeric purity, was based on the A part. The integration of the signals in Figure 2B indicated 90 % ee for 6. So, as we started from compound 2 with 90 % ee, the ring-opening of (R)-glycidol 6 proceeded without any significant loss of chiral purity.

Homologation by one carbon atom of chiral glycidyl tosylates would give ready access to important β -hydroxy butyric acids. To our knowledge, successful selective epoxide opening was only obtained using Nagata's⁷ reagent, Et₂AlCN.^{2b} However, epoxide ring-opening and homologation to (*R*)-7 by introduction of a nitrile function was accomplished by treatment of **1a** with Me₃SiCN and a catalytic amount of Ti(O-*i*-Pr)₄ or Al(O-*i*-Pr)₃ (Scheme 2). The optical purity of (*R*)-7 was analyzed by ¹H NMR of the (*R*)-MTPA ester. Figure 3A shows the ¹H NMR spectrum (δ 2.7-2.9) of *rac*-7; the CH₂-CN protons appear as a doublet at δ 2.77 in one diastereoisomer, and as two doublets at δ 2.82 and 2.83, due probably to the presence of two rotamers, in the other diastereoisomer. Figure 3B shows the ¹H NMR observed in the ring-opening of (*R*)-**1a**; the integration of the two signals indicated 85 % and 90 %, respectively for Ti(O-*i*-Pr)₄ and Al(O-*i*-Pr)₃. As we started from compound **1a** with 93 % ee, the observed ring-opening using Me₃SiCN is again highly stereoselective, but a little lower than in the case of Me₃SiN₃.

Finally we used this ring-opening for the "one-pot" synthesis of (S)-1-azido-3-naphtyloxy-2-hydroxy propane 8, a precursor of propanolol derivatives (Scheme 3). Ring-opening of (S)-1b by Me₃SiN₃ in the presence of a catalytic amount of Ti(O-*i*-Pr)₄ followed by the treatment of the crude mixture with α -naphtoxysodium gives after hydrolysis compound 8 with 72 % overall yield. The optical purity of this compound was determined by ¹H NMR of its (*R*)-MTPA ester. Figure 4A shows the ¹H NMR spectrum (δ 4.2-4.4) of *rac*-8; the -CH₂O-protons appear as a doublet for each diastereoisomer respectively at 4.28 and 4.40 ppm. Figure 4B shows the

Figure 1. ¹H NMR spectra (300 MHz) of the (R)-MTPA esters of tosylate 4 corresponding to the aromatic proton H_a: (A) 1:1 mixture of (R)-4a and (S)-4b; (B) (R)-4a; (C) (S)-4b.

Figure 2. ¹H NMR spectra (300 MHz) of the bis-(R)-MTPA esters of diol 6 corresponding to the H_a and H_a protons: (A) 1:1 mixture of (R)-6 and (S)-6; (B) (S)-6.

Figure 3. ¹H NMR spectra (300 MHz) of the (R)-MTPA esters of tosylate 7 corresponding to the CH_2CN protons: (A) 1:1 mixture of (R)-7 and (S)-7; (B) (R)-7.

Figure 4. ¹H NMR spectra (300 MHz) of the (R)-MTPA esters of azido alcohol 8 corresponding to the CH_2O protons: (A) 1:1 mixture of (R)-8 and (S)-8; (B) (S)-8.

¹H NMR observed in the ring-opening of 1b; the integration of the two signals indicated 94 % ee for (S)-8, indicating that the two-steps reaction occurs without loss of optical purity.

Scheme 3

Conclusion:

In summary, opening of (R)- and (S)-glycidol derivatives by Me₃SiN₃ or Me₃SiCN catalyzed by Ti(O-*i*-Pr)₄ or Al(O-*i*-Pr)₃ proceeds with regiospecificity and very high stereoselectivity. These derivatives are precursors of new functionalized optically active C₃ building blocks. The application of this methodology to the synthesis of biologically active compounds is in progress in our laboratory.

Experimental Section:

Column chromatography was carried out on silica gel GF₂₅₄ (230-400 mesh Merck). Infrared spectra were obtained using a Perkin-Elmer 681 instrument. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. ¹H NMR spectra were recorded on either a Bruker AM 300 (300 MHz) or a Bruker W 80 (80 MHz) in CDCl₃ solution, the δ values calculated being based on δ 7.26 for CHCl₃ for the silylated products; ¹³C-NMR spectra were obtained at 74.45 MHz on a Bruker AM 300 spectrometer, the δ values calculated being based on δ 77.0 ppm for CDCl₃ (central resonance) for the silylated products. All solvents were distilled from an appropriate drying agent and stored under an atmosphere of nitrogen. All air-sensitive reactions were performed under an atmosphere of nitrogen. Trimethylsilyl azide, titanium isopropoxide, aluminium isopropoxide, (*R*)-(-)-glycidyl tosylate 1a {[α]¹⁹_D -17.3 (*c* 2.7, chloroform), corresponding to 93 % ee}, (*S*)-(+)-glycidyl tosylate 1b {[α]¹⁹_D +17.7 (*c* 2.7, chloroform), corresponding to 95 % ee}, and (*R*)-(+)-glycidol 2 {[α]¹⁸_D+12 (neat), corresponding to 91 % ee} are commercially available (Aldrich).

(R)-1-Azido-2-trimethylsilyloxy-3-tosyloxypropane 3a. To a mixture of Ti(O-*i*-Pr)₄ (11.4 mg, 0.04 mmol, 0.04 equiv) and MeSiN₃ (141 mg, 1.3 mmol, 1.3 equiv) in 3 mL of tetrahydrofuran was added the epoxide 1a (228 mg, 1 mmol, 1 equiv). After 4 days at 40 °C, the catalyst was removed by flash-chromatography using a mixture of hexane and ethyle acetate (5:1) as the eluent to give 280 mg (83 %) of 3a. $[\alpha]^{25}_{D}$ +10.4 (*c* 1.5, chloroform); IR (neat) v 2090 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.04 (s, 9H, SiMe₃), 2.36 (s, 3H, CH₃), 3.12 (dd, *J* = 12.8, 5.5 Hz, 1H, H-1), 3.19 (dd, *J* = 12.8, 3.8 Hz, 1H, H-1'), 3.86 (dd, *J* = 9.3, 6.3 Hz, 1H, H-3), 3.88 (dd, *J* = 9.3, 4.7 Hz, 1H, H-3), 3.93 (m, 1H, H-2), 7.27 (d, 2H, Ar), 7.70 (d, 2H, Ar); ¹³C NMR (75.45 MHz, CDCl₃) δ - 0.4 (SiMe₃), 21.4 (CH₃), 53.1 (C-1), 69.2 (C-2), 70.1 (C-3), 127.7, 129.7, 132.3, 144.9 (C₆H₄). Anal. Calcd for C₁₃H₂₁N₃O₄SSi: C, 45.46; H, 6.16. Found: C, 45.48; H, 6.23.

In the case of the ring-opening catalyzed by Al(O-*i*-Pr)₃, a mixture of Al(O-*i*-Pr)₃ (30 mg, 0.15 mmol, 0.15 equiv) and MeSiN₃ (220 mg, 1.9 mmol, 1.9 equiv) in 2 mL of dichloromethane was stirred at room temperature for 2 h. The epoxide 1a (228 mg, 1 mmol, 1 equiv) was added to the mixture and the solution was stirred at 40 °C for 3 days. The product 3a was obtained as described above in 77 % yield.

(S)-1-Azido-2-trimethylsilyloxy-3-tosyloxypropane 3b. This title compound was prepared from 1b in 58 % yield [Ti(O-*i*-Pr)4] or 50 % [Al(O-*i*-Pr)3] by the same procedure used to prepare 3a. $[\alpha]_{D}^{25}$ -10.4 (c 1.5, chloroform); IR, ¹H and ¹³C NMR were identical with those obtained for (R)-3a.

General Procedure for Preparation of Mosher Esters. A solution of 3a (or 3b) (1.7 mmol) in 10 mL of methanol containing a trace of HCl was stirred at room temperature for 4 h. After neutralisation using Amberlite IRA 68 (20-50 mesh), removal of the solvent gave the crude hydrolyzed product 4a (or 4b) in quantitative yield. To 20 mg (0.07 mmol) of the crude azido alcohol [4a or 4b] in 1 mL of pyrydine was added 50 μ L of neat (R)-(+)-MTPA chloride. The mixture was stirred at 50 °C for 12 h. Ether was then added (10 mL), the ether layer was washed with water (3x5 mL) and dried (Na₂SO₄). Concentration afforded the crude

Mosher ester.

Mosher Ester of 4a. ¹H NMR (300 MHz, CDCl₃) δ 2.45 (s, 3H, CH₃C₆H₄-), 3.52 (s, 3H, CH₃O-), 3.40-3.60 (m, 2H, H-1), 4.17 (dd, J = 11.0, 5.8 Hz, 1H, H-3), 4.23 (dd, J = 11.0, 3.8 Hz, 1H, H-3'), 5.29 (m, 1H, H-2), 7.35 (d, J = 8.1Hz, 2H, Ar), 7.4-7.5 (m, 5H, Ar), 7.76 (d, J = 8.3 Hz, 2H, Ar).

Mosher Ester of 4b. ¹H NMR (300 MHz, CDCl₃) δ 2.45 (s, 3H, CH₃C₆H₄-), 3.50 (s, 3H, CH₃O-), 3.55 (dd, J = 13.3, 6.1 Hz, 1H, H-1), 3.62 (dd, J = 13.3, 4.6 Hz, 1H, H-1'), 4.08 (dd, J = 11.0, 5.6 Hz, 1H, H-3), 4.16 (dd, J = 11.0, 4.3 Hz, 1H, H-3'), 5.30 (m, 1H, H-2), 7.32 (d, J = 8.1 Hz, 2H, Ar), 7.4-7.5 (m, 5H, Ar), 7.70 (d, J = 8.3 Hz, 2H, Ar).

(*R*)-1-Azido-2,3-dihydroxypropane 6. Ring-opening of (*R*)-glycidol 2 using the procedure described in the presence of 2.6 equiv of Me₃SiN₃ gave the (*R*)-1-azido-2,3-bis(trimethylsilyloxy)propane 5 which was immediatly hydrolyzed in methanol (5 mL) containing a trace of HCl. Removal of the solvent gave a residue that was purified by flash-chromatography (elution with 2:1 AcOEt/hexane) to yield compound 6 (70 %). $[\alpha]_{D}^{20}$ +0.69 (*c* 1, chloroform); IR (neat) v 3400, 2100 cm⁻¹; ¹H NMR (80 MHz, CDCl₃) δ 3.4 (m, 3H), 3.7 (m, 4H).

Bis-Mosher Ester of *rac-6* **and** (*R*)-6. To a solution of the diol 6 (0.15 mmol) in 2 mL of pyridine was added 80 μ L of neat (*R*)-(+)-MTPA chloride. After stirring at 50 °C for 12 h., work-up was as described above. ¹H NMR (300 MHz, CDCl₃) of bis-Mosher ester of (*R*)-6: δ 3.41 (bs, 3H, CH₃O-), 3.49 (bs, 3H, CH₃O-), 3.49 (dd, *J* = 13.1, 6.5 Hz, 1H, H-1), 3.55 (dd, *J* = 13.1, 5.0 Hz, 1H, H-1'), 4.34 (dd, *J* = 12.4, 4.4 Hz, 1H, H-3), 4.58 (dd, *J* = 12.4, 3.7 Hz, 1H, H-3'), 5.35 (m, 1H, H-2), 7.3-7.5 (m, 10H, Ar).¹H NMR (300 MHz, CDCl₃) of bis-Mosher ester of (*S*)-6 (determined on *rac-6a*): δ 3.39 (bs, 3H, CH₃O-), 3.48 (bs, 3H, CH₃O-), 3.35-3.55 (m, 2H, H-1), 4.37 (dd, *J* = 12.5, 5.5 Hz, 1H, H-3), 4.70 (dd, *J* = 12.5, 3.4 Hz, 1H, H-3'), 5.35 (m, 1H, H-2), 7.3-7.5 (m, 10H, Ar).

(R)-1-Cyano-2-hydroxy-3-tosyloxypropane 7. To a solution of 0.23 g (1 mmol) of (R)-1a in 3 mL of CH₃CN were added 5.7 mg (0.02 mmol) of Ti(O-*i*-Pr)₄ and 19.8 mg (2 mmol) of Me₃SiCN. After the mixture was stirred at 60 °C for 6 days, 2 mL of water containing a trace of HCl was added. The solvent was removed under reduced pressure, and the residue was extracted with 20 mL of ether; evaporation of the solvent followed by flash-chromatography (elution with 2:3 hexane/EtOAc) gave 178 mg (70 % overall yield) of compound 7 as an oil; $[\alpha]^{25}_{D} + 2.7$ (c 1, chloroform).

In the case of ring-opening using Al(O-*i*-Pr)₃, the catalyst (20.4 mg, 0.1 mmol) and Me₃SiCN (19.8 mg, 2 mmol) were stirred in 3 mL CH₃CN for 2h; after addition of the epoxide (0.23 g, 1 mmol), the mixture was allowed to stirr at 50 °C for 10 days. The same treatment gave 102 mg (40 % overall yield) of compound (*R*)-7 as an oil; $[\alpha]_{D}^{25} + 2.4$ (c 0.5, chloroform).

IR (neat) v 3400, 2250 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.42 (s, 3H, CH₃), 2.54 (dd, J = 16.9, 6.5 Hz, 1H, H-1), 2.61 (dd, J = 16.9, 5.4 Hz, 1H, H-1'), 4.00 (dd, J = 10.3, 3.2 Hz, 1H, H-3), 4.00 (bs, 1H, OH), 4.03 (dd, J = 10.3, 5.1 Hz, 1H, H-3'), 4.18 (m, 1H, H-2), 7.30 (d, 2H, Ar), 7.70 (d, 2H, Ar) in agreement with the litterature⁸; ¹³C NMR (75.45 MHz, CDCl₃) δ 21.8 (CH₃), 22.3 (C-1), 65.2 (C-2), 69.5 (C-3), 116.8 (CN), 127.9, 130.1, 131.8, 145.6 (Ar).

Mosher Ester of (R)-7. ¹H NMR (300 MHz, CDCl₃) δ 2.48 (s, 3H, CH₃), 2.77 (d, J = 6.1 Hz, 2H, H-1), 3.46 and 3.53 (2xbs, 3H, CH₃O- corresponding to two rotamers), 4.05- 4.26 (m, 2H, H-3), 5.46 (m, 1H, H-2), 7.2-7.8 (m, 9H, Ar). Mosher Ester of (S)-7 (determined on the racemic mixture of 7). ¹H NMR (300 MHz, CDCl₃) δ 2.48 (s, 3H, CH₃), 2.82 and 2.83 (2xd, J = 6.3, 6.3 Hz, 2H, H-1 corresponding

to two rotamers), 3.53 (bs, 3H, CH₃O-), 4.05- 4.26 (m, 2H, H-3), 5.46 (m, 1H, H-2), 7.2-7.8 (m, 9H, Ar).

(S)-1-Azido-3-naphtyloxy-2-hydroxypropane 8. To a solution of 1g (4mmol) of (S)-1b in 5 mL of tetrahydrofuran under argon were added 79.6 mg (0.28 mmol) of Ti(O-*i*-Pr)₄ and 0.92 g (8 mmol) of Me₃SiN₃. After the mixture was stirred at 50 °C for 4 days, a solution of 1.2 g (8 mmol) of α -naphtoxysodium in 5 mL of tetrahydrofuran was added and the mixture was allowed to stirr at room temperature for 2 days. After hydrolysis using 5 mL of water containing a trace of HCl, the solvent was removed under reduced pressure to give a residue which was extracted by 30 mL of ether. Evaporation of the solvent followed by flash-chromatography (elution with 3:1 hexane/EtOAc) gave 700 mg (72 % overall yield) of compound (S)-8 as an oil; $[\alpha]^{25}$ _D - 12.4 (*c* 1, chloroform): IR (neat) v 3400, 3060, 2100 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.50 (s, 1H, OH), 3.62 (dd, J = 12.6, 6.0 Hz, 1H, H-1), 3.68 (dd, J = 12.6, 4.6 Hz, 1H, H-1'), 4.20 (d, J = 4.9 Hz, 2H, H-3), 4.33 (ddt, J = 6.0, 4.6, 4.9 Hz, 1H, H-2), 6.85 (d,1H, Ar), 7.40 (d, 1H, Ar), 7.55 (m, 3H, Ar), 7.85 (d, 1H, Ar), 8.25 (d, 1H, Ar); ¹³C NMR (75.45 MHz, CDCl₃) δ 53.7 (C-1), 69.2 (C-3), 69.5 (C-2), 105.1, 121.1, 121.5, 125.4, 126.6, 127.6, 127.7, 134.5, 153.8 (Ar). Anal. Calcd for C₁₃H₁₃N₃O₂: C, 64.18; H, 5.39. Found: C, 64.44; H, 5.83.

Mosher Ester of (S)-8. ¹H NMR (300 MHz, CDCl₃) δ 3.55 (bs, 3H, CH₃O-), 3.79 (dd, J = 13.1, 6.1 Hz, 1H, H-1), 3.84 (dd, J = 13.1, 4.5 Hz, 1H, H-1'), 4.28 (d, J = 5.0 Hz, 2H, H-3), 5.65 (ddt, J = 6.1, 4.5, 5.0 Hz, 1H, H-2), 6.70 (d, 1H, Ar), 7.1-7.9 (m, 3H, Ar), 8.09 (d, 1H, Ar), 8.35 (d, 1H, Ar). Mosher Ester of (R)-8 (determined on the racemic mixture of 8). ¹H NMR (300 MHz, CDCl₃) δ 3.55 (bs, 3H, CH₃O-), 3.6-3.8 (m, 2H, H-1), 4.4 (d, J = 4.8 Hz, 2H, H-3), 5.65 (m, 1H, H-2), 6.8 (d, 1H, Ar), 7.1-7.9 (m, 3H, Ar), 8.19 (d, 1H, Ar), 8.40 (d, 1H, Ar).

References:

- 1. Jurczak, J.; Pikul, S.; Bauer, T. Tetrahedron 1986, 42, 447-488.
- (a) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765-5780; (b) Klunder, J. M.; Onani, T.; Sharpless, K. B. J. Org. Chem. 1989, 54, 1295-1304.
- 3. Caron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1557-1560.
- (a) Guivisdalsky, P. N.; Bittman, R. J. Am. Chem. Soc. 1989, 111, 3077-3079; (b) Guivisdalsky, P. N.; Bittman, R. J. Org. Chem. 1989, 54, 4637-4642 and 4643-4648.
- (a) Sinou, D.; Emziane, M. Tetrahedron Lett. 1986, 27, 4423-4426; (b) Emziane, M.; Lhoste, P.; Sinou, D. Synthesis 1988, 541-544; (c) Emziane, M.; Lhoste, P.; Sinou, D. J. Mol. Catal. 1988, 49, L23-L25; (d) Sutowardoyo, K. I.; Emziane, M.; Lhoste, P.; Sinou, D. Tetrahedron 1991, 47, 1435-1446.
- 6. Dale, D. A.; Dull, D. L.; Mosher, M. S. J. Org. Chem. 1969, 34, 2543-2549.
- 7. Nagata, W.; Yoshioka, M.; Okamura, T. J. Chem. Soc. C 1970, 2365-2377.
- 8. Jung, M. E.; Shaw, T. J. J. Am. Chem. Soc. 1980, 102, 6304-6311.